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SUMMARY

A �nite-element study of two- and three-dimensional incompressible viscoelastic �ows in a planar
lid-driven cavity and concentric rotating cylinders is presented. The hardware platforms consist of
both homogeneous and heterogeneous clusters of workstations. A semi-implicit time-stepping Taylor–
Galerkin scheme is employed using the message passing mechanism provided by the Parallel Virtual
Machine libraries. DEC-alpha, Intel Solaris and AMD-K7(Athlon) Linux clusters are utilized. Parallel
results are compared against single processor (sequentially) solutions, using the parallelism paradigm
of domain decomposition. Communication is e�ectively masked and practically ideal, linear speed-up
with the number of processors is realized. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, parallel computation has become increasingly more important for solving
large-scale computational �uid dynamics problems, which arise in many areas of science and
engineering involving both compressible and incompressible �ow regimes. We are particularly
interested in complex viscoelastic �ows, of immediate relevance to the processing industries,
associated with polymer, foods and oil products. The mathematical modelling of such �ows,
typically generates complex three-dimensional (3D) systems of partial di�erential equations of
mixed type. Common discretization approaches adopted, such as �nite element, �nite volume
or spectral element formulations, transform these systems from di�erential to algebraic form,
generating large numbers of degrees of freedom. Over the preceding decade, with the advance
of computer hardware and developments in sophisticated numerical algorithms, it has become
easier to solve complex �ows, albeit of limited size. To make satisfactory progress in this
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area often �ne resolution meshes are required, that may also involve adaptive meshing. This
places practical limitations upon the range and scope of the problems that may be tackled in
terms of size, necessitating a shift from a sequential to a parallel mode of computation.
Parallel computation may be viewed in a distributed manner, where memory and processors

are distinct, or in a combined form where memory is shared. The distributed model involves
sending and receiving messages and con�guring a processor network (e.g. master=slave). Over
the last few years there has been an increase in the availability of software to perform such
message passing. Recent developments in parallel computing using message passing proto-
cols, such as Theoretical Chemistry Message Passing Tool Kit (TCMSG), Parasoft Express
(EXPRESS), Network Linda (LINDA), Message Passing Interface (MPI) and Parallel Virtual
Machine (PVM), have given impetus to the design of parallel algorithms to solve very large
time consuming three-dimensional problems. In this paper, following the study of Reference
[1], PVM version 3.4.3 is adopted using a Master=Slave con�guration.
In the solution of viscoelastic �ows, inverting and resolving linear systems of equations

constitutes a large proportion of CPU time overhead. The nature of the problem to be solved
may be coupled, leading to large system matrices or alternatively, decoupled which may be
handled iteratively.
Examples of using PVM for parallelizing numerical codes are described in References [2, 3].

In Reference [2], two-dimensional parallel computation of viscoelastic �ows, steady-state solu-
tions for entry �ow and stick-slip �ow problems are obtained employing the POLYFLOW code
with a �nite-element algorithm. A non-linear system of partial di�erential equations of mixed-
type KBKZ integro-di�erential equations are solved over unstructured triangular meshes. Both
coupled (MIXl and SU4× 4) and decoupled (iterative) system approaches are contrasted. For
the solution of the linear systems involved, a semi-iterative approach is adopted in the style
of a Dual Schur Complement technique.
A time-stepping �nite-volume method was used in Reference [3] with the SIMPLER

algorithm. Results are presented for the solution of �ow past a cylinder between two parallel
plates, employing an exponential PTT model, unstructured triangular meshes, and a decoupled
solution procedure. The algebraic linear system of equations are solved sequentially through
a SIMPLER iteration procedure with an explicit Gauss–Seidel solver. For domain decompo-
sition, various methods were tested, with RSB being recommended for mesh partitioning.
For parallel computation, both [2, 3] have used PVM as the message passing mechanism on

MIMD parallel computers in master=slave style. Intel IPSC=860 hypercube and Convex Meta
Series shared-memory were used by Keunings [2] and DEC-alpha clusters were used by Dou
and Phan-Thien [3].
For any �xed mesh, the performance of these parallel implementations are presented demon-

strating monotonically increasing speed-up and monotonically decreasing e�ciency with
increasing number of domains (processors). Running with a �xed number of processors
illustrates the increase in speed-up and e�ciency with an increasing number of mesh ele-
ments.
The present study adopts a semi-implicit Taylor–Galerkin=pressure-correction �nite-element

time-marching scheme, that has been developed and re�ned over the last decade. This scheme,
initially implemented sequentially in FORTRAN 77, is appropriate for the simulation of
incompressible isothermal Newtonian, �bre suspension, generalized inelastic and viscoelas-
tic �ows [4–8]. Parallel implementations of this algorithm for Newtonian and Generalized
inelastic �uids for �ow past a rigid sphere in a tube employing unstructured meshes is
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described in References [1, 9]. Parallelization was achieved using PVM on a cluster of disk-
less Sun Spare-1 workstations with domain decomposition and a degree-of-freedom approach.
For the solution of the linear algebraic systems, a hybrid method was adopted, i.e. direct
matrix inversion (Choleski factorization) for the pressure sti�ness matrix and iteration for the
momentum equations. Parallel e�ciency close to the ideal (linear) was achieved.
In this paper we extend our previous work, describing how the algorithm has been imple-

mented in parallel for viscoelastic �uids using di�erential constitutive models of single-mode
type.
The stress equations are solved using a decoupled approach as for the momentum equa-

tions. For viscoelastic calculations, a single-mode Oldroyd-B model is employed. Such a
model may re�ect memory and constant shear viscosity �uid properties. Triangular elements
in two dimensions and tetrahedral elements in three dimensions are employed with quadratic
interpolation for velocity and stress, and linear interpolation for pressure. A domain decom-
position method is adopted on both shared and distributed memory clusters for homogeneous
and heterogeneous environments.
Two types of problem are investigated. The �rst concerns the two- and three-dimensional

�ow of Newtonian and viscoelastic �uids within a lid-driven cavity—a con�ned-�ow moving
boundary problem. This problem is industrially relevant for processing applications such as
short-dwell and coating (�exible blade, roller, packing tape, etc.). It is also of importance for
testing numerical methods and understanding viscoelastic e�ects. The simplicity and regularity
of the geometry, presence of recirculation regions in the centre and stagnation in the corners,
and singularity at the edges of the lid with strong extension, present interesting �ow phenom-
ena. The discontinuous nature of the velocity boundary conditions at the two edges=points
where the moving lid is in contact with two adjacent solid walls, generates �ow singulari-
ties. The combination of these features, has resulted in the lid-driven cavity �ow becoming a
popular benchmark problem in the �eld of computational �uid dynamics, upon the basis of
which convergence and stability may be established.
The second problem investigated in this study is the two- and three-dimensional �ow of

Newtonian and viscoelastic �uids between concentric rotating cylinders. This problem arises
in the food industry, for example, within dough mixing. The availability of an analytical
solution and the simplicity of the domain, permits algorithm validation within a cylindrical
polar coordinate system.
Results are presented on the performance of the parallel algorithm for these two problems,

providing speed-up and parallel e�ciency measures for a variety of di�erent sized meshes
and network con�gurations.

2. PROBLEM SPECIFICATION

The particular problems simulated in this study are two- and three-dimensional �ows of planar
steady lid-driven cavity of unit dimension and concentric rotating cylinders for Oldroyd-B
�uid. Initially, a solution is obtained for viscous Newtonian �uid.
Schematic diagrams for the three-dimensional domains of interest covering the cubic

lid-driven cavity and concentric rotating cylinder �ows are displayed in Figure 1. Symmetric
re�ected structured meshes are chosen. Two-dimensional �nite-element meshes are shown in
Figure 2. In two dimensions, two triangular elements within a rectangle are used, while in
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Figure 1. Schematic diagrams for planar lid-driven cavity and concentric rotating cylinder domains.

Figure 2. Two-dimensional �nite-element meshes for planar lid-driven cavity and
concentric rotating cylinder �ows.

Table I. Two-dimensional mesh data.

Meshes Elts Nodes DOF(N) DOF(V)

lid cav
102 200 441 1003 2326
202 800 1681 3803 8846
402 3200 6561 14803 34486
602 7200 14641 33003 76926

rot cyl 400 840 1900 4420

three-dimension six tetrahedra form a cube. The total number of elements, nodes and degrees
of freedom are presented in Tables I and II according to the relevant dimensions and �u-
ids, where N and V denote Newtonian and viscoelastic cases, respectively. The degrees of
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Table II. Three-dimensional mesh data.

Meshes Elts Nodes DOF(N) DOF(V)

lid cav
43 384 729 2312 6686
83 3072 4913 15468 44946
103 6000 9261 29114 84680

rot cyl 6000 9240 29040 84480

freedom increase by a factor of approximately three with the introduction of stress variables
in the viscoelastic case.
The statement of the �ow problem is completed by prescribing appropriate initial and bound-

ary conditions. Simulations start from a quiescent state for both two- and three-dimensional
lid-driven cavity and concentric rotating cylinder �ows. No-slip velocity boundary conditions
are imposed on the solid surfaces=walls of both problems.
For lid-driven cavity �ow, a constant velocity on the top moving-lid and a �xed pressure

(p=0) at the departing �ow edge=point on the lid in three=two dimensions are applied. For
viscoelastic �ows, a �xed stress tensor is assumed at the entering edge=point of the lid in
three=two dimensions, respectively.
For concentric rotating cylinder �ow, the lid=stirrer is held stationary and the outer cylinder

(vessel) and base rotate at a constant rate. A �xed pressure (p=0) is assumed at the outer
rotating cylinder in three=two dimensions.
For these time-stepping computations, an appropriate time-step value of �t=0:01 is chosen

and a relative termination tolerance of 10−5 is enforced. To con�rm correctness of three-
dimensional computations, two-dimensional cross-sectional �ows are computed at a central
sliced mid-plane of the three-dimensional geometry.

3. GOVERNING SYSTEM OF EQUATIONS

The two- and three-dimensional isothermal �ow of incompressible viscoelastic �uid can be
modelled through a system comprising of the generalized momentum transport, conservation
of mass and viscoelastic stress constitutive equations. In the absence of body forces, Equations
(1)–(5) represent the governing system. Incompressibility is expressed, via the conservation
of mass, as

∇ · u=0 (1)

The conservation of momentum transport equation is

�
@u
@t
=∇ ·� − �u · ∇u (2)

where, u is the �uid velocity vector �eld, � is the Cauchy stress tensor, � is the �uid density, t
represents time and ∇· and ∇ are divergence and gradient operators, respectively. The Cauchy
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stress tensor can be expressed in the form

�=−p�+ Te (3)

where p is the isotropic �uid pressure (per unit density), � is the Kronecker delta tensor,
whilst Te is the extra-stress tensor.
For the upper-convected Oldroyd-B di�erential model the extra-stress tensor Te is given by

Te = 2�2d+ � (4)

�1
∇� + �=2�1d (5)

where d is the rate-of-strain tensor, � the polymeric stress tensor and ∇� the upper-convected
material derivative. �1 is the polymeric and �2 the solvent �uid viscosities, and �1 is a
relaxation time (single=averaged). Then, the total viscosity �=�1 + �2, and the ratio �1=�2,
is taken as 1

9 .

4. NUMERICAL METHOD

The numerical algorithm employed is a time-marching semi-implicit TGPC scheme [4–8],
based on a fractional-step formulation. This involves discretization, �rst in the temporal do-
main, adopting a Taylor series expansion in time and a pressure-correction operator-split,
to build a second-order time-stepping scheme. This scheme has been developed extensively
elsewhere. The pressure-correction split follows a Crank–Nicolson style (see Reference [10]),
requiring the solution of the temporal di�erence of pressure. The predictor–corrector doublet
at step 1, is a Lax–Wendro� scheme, here of Taylor–Galerkin form, explicit on convection
terms. Semi-implicit aspects arise, via treatment of di�usion terms, that removes the excessive
stability limitation due to di�usion. Only the Courant conditional must be respected, and for
the present structured meshes, a �xed time step is found quite adequate [4, 5].
Spatial discretization is achieved via Galerkin approximation for the momentum equation

and Streamline-Upwind-Petrov–Gelerkin for the constitutive equation. The �nite-element basis
functions are quadratic for velocity and stress, and linear for pressure, taken over triangles for
two dimensions and tetrahedra in three. Galerkin-weighted integrals are evaluated by exact
integration, while for Streamline-Upwind-Petrov–Galerkin integrals, seven and 15 point Gauss
quadrature rules are invoked for two- and three-dimensional problems, respectively.
Utilizing conventional inner-product notation for square-integrable functions, a weighted-

residual form of the equations is obtained by projecting the momentum equation onto the space
of test functions U0, the continuity equation onto the test function space P, the constitutive
equation onto the test functions T0 and integrating over the spatial domain �. After integration
by parts via the divergence theorem, a semi-implicit non-dimensional weak-form statement of
the problem is
Stage 1a: Given (un; �n; pn)∈U×T×P, �nd un+1=2 ∈U and �n+1=2 ∈T such that

[(
2
�t
(un+1=2 − un); v

)
+

1
2Re

(∇(un+1=2 − un);∇v)
]

=
((
pn − 1

Re
∇un − �

)
;∇v

)
− (((u · ∇)u)n; v) ∀v∈U0 (6)
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(
2We
�t

(�n+1=2 − �n); s
)
= ((2�1d − �−Weu · ∇�); s)n

+((We{� · ∇u+ (� · ∇u)T}); s)n ∀s∈T0 (7)

Stage 1b: Given un; un+1=2 ∈U, �n+1=2 ∈T and pn ∈P, �nd u∗ ∈U and �n+1 ∈T such that

[(
1
�t
(u∗ − un); v

)
+

1
2Re

(∇(u∗ − un);�v)
]
=

((
pn − 1

Re
∇un − �

)
;∇v

)

− (((u · ∇)u)n+1=2; v) ∀v∈U0 (8)

(
We
�t
(�n+1 − �n); s

)
= ((2�1d − �−Weu · ∇�); s)n+1=2

+ ((We{� · ∇u+ (� · ∇u)T}); s)n+1=2 ∀s∈T0 (9)

Stage 2: Given (u∗; pn)∈U×P, �nd pn+1 − pn ∈P such that

(�∇(pn+1 − pn);∇q)=− 1
�t
(∇u∗; q) ∀q∈P (10)

Stage 3: Given (u∗; pn+1 − pn)∈U×P, �nd un+1 ∈U such that
(
1
�t
(un+1 − u∗); v

)
=(�(pn+1 − pn);∇v) ∀v∈U0 (11)

where �t is the time lapse.
Here, n denotes the time-step index. Velocity and stress at the half step n+ 1

2 are computed
in step 1a from data gathered at level n and in step 1b an intermediate non-solenoidal velocity
�eld u∗ and stress �eld � are computed at the full time-step, using the solutions at the level
n and n + 1

2 . At this stage, calculations for stress over a full time-step cycle are complete.
For pressure this leads naturally to a second step, where a Poisson equation is solved for the
pressure di�erence subject to the non-solenoidal velocity �eld u∗. For second-order accuracy
in time the Crank–Nicolson choice of �=0:5 is adopted. In a third and �nal step, a solenoidal
velocity �eld at the end of the time-step cycle is captured from the pressure-di�erence �eld
of step 2.
In the present implementation of our algorithm, spatial discretization is a�ected by select-

ing �nite-dimensional subspaces within U0, U, T0, T and P (as stated above). The systems
of equations that arise at stage one and three are solved by an iterative Jacobi technique,
where only a handful of iterations (�ve) are required. This has always been our experience
in scale-up for steady problems, where preference goes to larger numbers of time-step loops.
Hence our expectation for large industrial problems. One may revise this choice to double
the iterations, per linearized stage, for transient problems. At stage two, a Poisson equation,
for the temporal di�erence of pressure is solved by a direct Choleski method. The procedures
of assembly of right-hand side vectors and Jacobi iteration are highly parallelizable. As this
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algorithm is dominated by these element and iterative compute phases, the time complexity is
theoretically expected to be linear in the degrees of freedoms [1]. Speed-up, via parallelism
invoked over the number of processors, should also re�ect this property, provided commu-
nication overhead is minimal and insigni�cant compared with process calculation time. In
addition, the solution-independent structure of the ‘Poisson-like’ operator implies a one-o�
Choleski decomposition phase at the outset, prior to the time-step loop. For e�ciency, the
direct Choleski solution process, necessitates optimized node numbering and bandwidth re-
duction. For three-dimensional �ows, the amount of memory required for the Choleski solver
may impose a severe limitation on the size of possible problem to be solved, due to the large
number of total nodal unknowns and the associated large bandwidth. This limitation is signif-
icantly reduced by appealing to distributed storage for each subdomain problem, and through
reordering of node numbers and near-optimal bandwidth reduction [1, 11]. As proposed in
Reference [1], for suitable problem and platform con�gurations, it is practical to recast such
large three-dimensional sized problems into sub-problems, for each processor-node of the
network.
The semi-implicit Taylor–Galerkin=pressure-correction algorithm was implemented origi-

nally in FORTRAN-77. Recently, this algorithm has been restructured and streamlined for
e�ciency, modifying looping and IF constructs, and incorporating new features of FORTRAN-
90, such as direct initialization and assignments, and modular common blocks. By way of
example, such changes in the sequential program have led to a speed-up factor of 3.4 in
execution time for three-dimensional concentric rotating cylinder �ows.

5. PARALLELIZATION STRATEGY

5.1. Hardware con�guration

The target hardware platform is composed of subsystems of both homogeneous and hetero-
geneous type, involving a number of workstations. Two shared-memory computers have been
employed, one with three processors and 256 MB memory and another with four proces-
sors and 1 GB memory, together with �ve single processor DEC-alpha workstations with
64 MB memory, running DEC Unix. In addition, we have also used three single proces-
sor Intel workstations with 128 MB memory running Solaris Unix, eight 450 MHz AMD-
K6-2 single processor with 64 MB memory running Linux and four 950 MHz AMD-K7
single processor with 256 MB memory running Linux. For the homogeneous network, the
system con�gurations o�er shared, as well as distributed memory DEC-alpha combinations.
For heterogeneous networks of workstations, DEC-alpha, Intel Solaris and AMD-K Linux
systems are used. These workstations communicate through a 100 MBit per seconds Ethernet
network.
Version 3.4.3 of the PVM system developed at Oak Ridge National Laboratory has been

employed. PVM supports programs written in both C=C++ and FORTRAN by providing a
library of low-level communication routines [12].

5.2. Domain decomposition

The parallelization strategies and associated test results are applicable to a wide range of
CFD applications. The domain decomposition method provides ample potential opportunity for
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Figure 3. Domain decomposition diagram for planar lid-driven cavity.

parallelization of �nite-element methods. In this approach, the domain of interest is partitioned
into smaller subdomains of desired size, according to the speci�cation of the available proces-
sors. The overall computational load may be equi-partitioned and assigned uniformly among
the available processors, resulting in a uniform balancing of computational load (see Figure 3
for the case of eight processors). The interprocessor communication can considerably in�u-
ence e�ciency. In this coarse granularity implementation, each subdomain is assigned to a
processor, that computes simultaneously the corresponding subsection of the subdomain. Such
a con�guration would yield optimal performance when there is no communication amongst
the processors.
Load balancing is one of the central issues in parallel computing. At this stage, issues of

dynamic load balancing are yet to be investigated. Here, static uniform load distribution is
ensured, irrespective of processor speed, using a recursive spectral bisection method [5]. This,
with appropriate choice of granularity of parallelism, enables us to handle synchronization of
processes, sending and receiving messages, and distributing data e�ciently.
Our �nite-element algorithm is inherently suitable for parallelization through a variety of

paradigms. This is well documented in Reference [9]. Here, we focus on the paradigm of
domain decomposition. As our �nite-element meshes are structured, adopting a domain de-
composition approach, the meshes are partitioned into a number of equal-sized subdomains
according to the number of processors available. On each processor, calculations are performed
simultaneously for each subdomain over a set of slave processors. On the periphery of each
subdomain, shared boundary nodes are computed by a central master (control) processor. The
master processor is used to gather the contributions from shared nodes that result from subdo-
main processes on each processor, and subsequently, redistribute the combined information to
each processor. The parallel algorithm (ParTGPC) is illustrated in Table III, across master and
slave-processors, accounting for combine-distribute, send-receive, build-solve phases, through
the stages per time-step loop.
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Table III. Parallel Taylor–Galerkin algorithm (ParTGPC).

Master processor:

Enter preprocessing information;
Setup Parallel Virtual Machines;
Input domain decomposition information free RSB;
Spawn process on slave processors;
Input numerical, fluid and algorithm parameters;
Input mesh information, and initial and boundary conditions;
Decompose domain and reorder node numbering after band-width reduction,
and pack all information;
Distribute information to slave processors after rearranging the
informations;
Synchronise the machines and hand-shake with slave processors;
While not converged

Stage 1a
Receive: right-hand-side for stage-1a from each slave processor;
Redistribute: after combining;
Loop over Jacobi iteration;

Solve stage-1a for interfacing nodes;

Stage 1b
Receive: right-hand-side from each slave processor for stage-1b;
Redistribute: after combining;
Loop over Jacobi iteration;

Solve stage-1b for interfacing nodes;

Stage 2
Build: right-hand-side for interfacing nodes on stage-2;
Solve stage-2 for pressure difference using Choleski on interfacing
nodes;

Stage 3
Receive: right-hand-side from each slave processor for stage-3;
Redistribute: after combining;
Loop over Jacobi iteration;

Solve stage-3 for interfacing nodes;

Compute error norm for interfacing nodes;
Test for convergence;
Synchronise: the machines and hand-shake with slave processors;
Receive: results from slave processors;
Print combine final result;

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1347–1363
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Table III (Contd.)

Slave processor:
Receive: preprocessing information from master processor and unpack all
information;
Synchronise: the machines and hand-shake with other processors;
While not converged

Stage 1a
Build: right-hand-side for stage-1a for internal nodes;
Send: only information of interfacing nodes to master processor;
Receive: combined information from master processor;
Loop over Jacobi iteration;

Solve stage-1a for internal nodes;

Stage 1b
Build: right-hand-side for stage-1b for internal nodes;
Send: only information of interfacing nodes to master processor;
Receive: combined information from master processor;
Loop over Jacobi iteration;

Solve stage-1b for internal nodes;

Stage 2
Build: right-hand-side for stage-2 for internal nodes;
Solve stage-2 for pressure difference using Choleski on internal nodes;

Stage 3
Build: right-hand-side for stage-3 for internal nodes;
Send: only information of interfacing nodes to master processor;
Loop over Jacobi iteration;

Solve stage-3 for internal nodes;

Computer error norm for internal nodes, and information of interfacing nodes
to master;
Synchronise: the machines and hand-shake with slave processors;
Send: result to master processors;

5.3. Speed-up and e�ciency

Numerical computed results are presented for the performance of the parallel TGPC scheme
by measuring speed-up, Sn, and e�ciency, �n, de�ned, respectively, as

Sn=
Ts
Tn
; �n=

Sn
n

where Ts is the CPU time in seconds for the sequential algorithm and Tn is the CPU time
for the parallel algorithm for n processors. CPU time Tn of parallel computation can be
decomposed into computation (T comp) and communication (T comm) time. Timings correspond
to total job run-time, inclusive of input–output and communication latency. For a �xed mesh
with an increasing number of partitions, the cost of communication increases and this decreases
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Table IV. CPU speed-up and e�ciency, 3D lid-driven cavity: 103 mesh.

Newtonian Viscoelastic

Processors Sn �n Sn �n

1 1 1.00 1.00 1.00 1.00
2 2 1.98 0.99 1.99 1.00
3 4 3.99 0.99 3.99 0.99
4 8 7.87 0.98 7.98 0.99

the total e�ciency of computation. Whilst, for computation on a �xed number of domains
and upon increasing the size of problem (mesh), overall e�ciency increases.

6. RESULTS

In this section, for brevity, we present results only for three-dimensional computations, though
we point out that these have been cross-checked in symmetry planes against two-dimensional
solutions.

6.1. Homogeneous networks

In Table IV, results are displayed for Newtonian and viscoelastic simulations for planar
three-dimensional lid-driven, cavity �ow on a 103 mesh. We have used a single-processor
AMD-K6-2 450MHz Linux workstation for sequential implementation (that lacks the parallel
overhead). For parallel implementations, a distributed-memory homogeneous network is estab-
lished through two, four and eight single-processor AMD-K6-2 450MHz Linux workstations.
The results in Table IV illustrate linear speed-up with the number of processors and almost

a constant e�ciency of 1. For three-dimensional Newtonian simulations, a maximum 2% loss
of e�ciency is observed up to eight processors. This loss of e�ciency improves in three-
dimensional viscoelastic simulations, where only 1% loss of e�ciency is observed for the
same network con�guration and number of processors.
Figure 4 is included to compare our results against Reference [2] (two �ow problems)

and Figure 5 against Reference [3] (�ow around a cylinder, where the mesh is initially
grouped into a coarse submesh of 48 blocks). Parallel strategies and platforms employed in
References [2, 3] were identi�ed in Section 1. From these �gures it is clear that the observation
of others, using PVM on a shared-memory network with eight processors, identi�es a loss of
e�ciency that varies between 10% to above 18%. In contrast, for the present implementation
for both three-dimensional Newtonian and viscoelastic �ows, masking of communication has
been successfully managed (see Reference [1]). Further comparison of these three studies are
illustrated in Figures 6 and 7, where speed-up and e�ciency of the simulations in References
[2, 3] are plotted against the results in Table IV (for viscoelastic �ows). The results on
e�ciency are particularly complimentary to the present study and approach.
For the three-dimensional concentric rotating cylinder �ow, we have used a DEC-alpha

workstation as a single processor for sequential implementations. For parallel computation,
we have constructed a homogeneous network of DEC-alpha processors coupled to a shared-
memory resource. As the size of the problem (elements, nodes and degrees of freedom) is
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Figure 4. Loss of e�ciency [2].

Figure 5. Loss of e�ciency [3].

equivalent to the 103 three-dimensional lid-driven cavity �ow problem, results on speed-up
and e�ciency are similar. However, due to the use of quadrature points, total computation
timing is much higher than that for the planar lid-driven cavity �ow problem.
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Figure 6. Comparisons of speed-up.

Figure 7. Comparison of e�ciency.

6.2. Heterogeneous networks

In Table V, results are displayed for Newtonian and viscoelastic simulations for three-
dimensional lid-driven cavity �ow on a 83 mesh. Timings corresponds to total job run-time,
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Table V. CPU time in seconds, three-dimensional lid-driven cavity 83 mesh.

Processors Newt. Elastic

1 1 (�)-99% CPU 1434 21 079
1 Master (DEC-�) +

2 2 (�)-50% CPU 1147 20 795
3 2 (�)-90% CPU 713 11 562
4 4 (2� + 2Intel)-33% CPU 1089 15 978
5 4 (2� + 2Intel)-50% CPU 734 10 681

Table VI. CPU time in seconds.

Processors Elements Nodes DOF Time (s)

1 2 (1 DEC-� + 1 AMD-K Linux) 43 729 6686 1150
2 4 (2 DEC-� + 2 AMD-K Linux) 83 4913 44946 4497
3 8 (4 DEC-� + 4 AMD-K Linux) 103 9261 84680 4744

inclusive of input–output and communication latency. A DEC-alpha workstation is used as a
single processor for the sequential computation. For parallel computation homogeneous and
heterogeneous network combinations are constructed. In Table V (rows 4 and 5), we re-
port on timings for a system comprising of two DEC-alpha and two Intel processors. Other
combinations have also been employed, demonstrating variation in the number of DEC-alpha
and Intel-type processors. The percentage CPU usage indicates results produced on multi-user
systems, and therefore, the share of the processor usage received in each case.
For Newtonian �ows, the time taken on the single processor with 99% of CPU resource

is almost double that on two processors with 90% CPU. This indicates linear dependency
on the number of processors and that communication is being dominated by computation.
This speed-up is more signi�cant in the viscoelastic case, where we have additional sets of
equations and an increase in the number of degrees of freedom. We observe roughly linear
speed-up for homogeneous systems, see Table V (2 and 3). This is also true for (4 and 5),
heterogeneous systems. That is, assuming that the Intel (450MHz) and DEC-alpha (433MHz)
processors are almost comparable on base-speed for the current code application. This is borne
out by inspection of performance in contrasting (2) to (4) and (5), even when accounting for
the percentage of processor usage.

6.3. Scalability

A parallel algorithm is said to be scalable if the computation time remains unchanged when
the total number of degrees of freedom is increased simultaneously with an increase in the
same ratio, as the number of slave processors.
Various heterogeneous network combinations are constructed to demonstrate scalability. To

establish two, four and eight slave processor heterogeneous networks, in each case equal
numbers of DEC-alpha and AMD-K7 Linux workstations are taken.
In Table VI, we report timings for systems comprising of the above network clusters.

These results are cross-checked on other heterogeneous networks, such as those involving
combinations of DEC-alpha and Intel Solaris processors.
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From rows 2 and 3 in this table, we observe that doubling the number of processors
and degrees of freedom gives the same order of computation time. Furthermore, this is
true if we extrapolate the time from row 1, taking the size of problem to be half that in
row 2. This demonstrates the scalability of our parallel algorithm. In parallel computation
mode, better scalability depends upon ideal speed-up, whilst speed-up depends on problem
size.

7. CONCLUSIONS

We have investigated parallel simulations of Newtonian and viscoelastic �uid �ows in pla-
nar lid-driven cavity and concentric rotating cylinder problems. A variety of homogeneous
and heterogeneous clusters of workstations have been tested, with several versions of the
Unix operating system. For the range of problems considered and processor clusters adopted,
almost linear speed-up with increasing number of processors has been achieved. Hence,
the algorithm described appears ideal for parallelization and ripe for further
research.
Our next phase of investigation is to study the behaviour of the algorithm on larger cluster-

ings of processors and to solve actual industrial-scale problems. This shall embrace complex
three-dimensional �ows and multi-mode viscoelastic computations, which will o�er further
opportunities for parallelization. There, it is anticipated that, with the increase in complexity
of the problem, speed-up will eventually degrade from the ideal linear form. This is to be
quanti�ed in the future.
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